首页> 外文OA文献 >Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models
【2h】

Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models

机译:上地幔热和成分结构的地震,岩石和地球动力学约束:整体热化学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mapping the thermal and compositional structure of the upper mantle requires a combined interpretation of geophysical and petrological observations. Based on current knowledge of material properties, we interpret available global seismic models for temperature assuming end-member compositional structures. In particular, we test the effects of modelling a depleted lithosphere, which accounts for petrological constraints on continents. Differences between seismic models translate into large temperature and density variations, respectively, up to 400 K and 0.06 g cm-3 at 150 km depth. Introducing lateral compositional variations does not change significantly the thermal interpretation of seismic models, but gives a more realistic density structure. Modelling a petrological lithosphere gives cratonic temperatures at 150 km depth that are only 100 K hotter than those obtained assuming pyrolite, but density is ~0.1 g cm-3 lower. We determined the geoid and topography associated with the density distributions by computing the instantaneous flow with an existing code of mantle convection, STAG-YY. Models with and without lateral variations in viscosity have been tested. We found that the differences between seismic models in the deeper part of the upper mantle significantly affect the global geoid, even at harmonic degree 2. The range of variance reduction for geoid due to differences in the transition zone structure (i.e. from 410 to 660 km) is comparable with the range due to differences in the whole mantle seismic structure. Since geoid is dominated by very long wavelengths (the lowest five harmonic degrees account for more than 90 per cent of the signal power), the lithospheric density contrasts do not strongly affect its overall pattern. Models that include a petrological lithosphere, however, fit the geoid and topography better. Most of the long-wavelength contribution that helps to improve the fit comes from the oceanic lithosphere. The signature of continental lithosphere worsens the fit, even in simulations that assume an extremely viscous lithosphere. Therefore, a less depleted, and thus less buoyant, continental lithosphere is required to explain gravity data. None of the seismic tomography models we analyse is able to reproduce accurately the thermal structure of the oceanic lithosphere. All of them show their lowest seismic velocities at ~100 km depth beneath mid-oceanic ridges and have much higher velocities at shallower depths compared to what is predicted with standard cooling models. Despite the limited resolution of global seismic models, this seems to suggest the presence of an additional compositional complexity in the lithosphere
机译:绘制上地幔的热和成分结构需要对地球物理和岩石学观测资料进行综合解释。基于当前的材料特性知识,我们假设端部成员组成结构来解释可用的全球地震模型温度。特别是,我们测试了对枯竭的岩石圈建模的效果,该岩石圈解释了各大洲的岩石学限制。地震模型之间的差异分别导致温度和密度变化较大,在150 km深度下最大可达400 K和0.06 g cm-3。引入横向成分变化不会显着改变地震模型的热解释,但会给出更现实的密度结构。对岩石岩石圈进行建模可以得到150 km深度的克拉通温度,仅比假定黄铁矿时的温度高100 K,但密度要低约0.1 g cm-3。通过使用现有的地幔对流代码STAG-YY计算瞬时流量,我们确定了与密度分布相关的大地水准面和地形。已经测试了具有和不具有横向粘度变化的模型。我们发现上地幔较深部分的地震模型之间的差异即使在谐和度为2时也会显着影响整体大地水准面。由于过渡带结构的不同(即从410 km至660 km),大地水准面的方差减小范围由于整个地幔地震结构的差异,)与范围相当。由于大地水准面以很长的波长为主(最低的五个谐波度占信号功率的90%以上),因此岩石圈密度对比并不会强烈影响其整体模式。但是,包括岩石岩石圈的模型更适合大地水准面和地形。有助于改善拟合度的大部分长波贡献来自海洋岩石圈。大陆岩石圈的特征使拟合度变差,即使在假设岩石圈极为粘稠的模拟中也是如此。因此,需要一个消耗较少,因而浮力较小的大陆岩石圈来解释重力数据。我们分析的地震层析成像模型均无法准确再现海洋岩石圈的热结构。与标准冷却模型所预测的相比,它们都在中洋海脊以下约100 km的深度处表现出最低的地震速度,而在较浅的深度处具有更高的速度。尽管全球地震模型的分辨率有限,但这似乎表明岩石圈中存在额外的成分复杂性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号